Alkenes
Edited by Jamie (ScienceAid Editor), Taylor (ScienceAid Editor), Giovanni Anthonio
Structure and Bonding
Alkenes are part of an homologous series. They have the functional group of a C=C (double bond between two carbons). and the general formula of CnH2n, where n is the number of carbon molecules.
There are two types of bonds in alkenes because of the different electron sub-shells. There is a σ bond (sigma) which is when two p suborbitals overlap, and the π bond (pi) is above and below the atoms, it tends to be weaker because of this and it also has no rotation which is why isomerism exists.
Because of this bonding, the double bond is a centre of high electron density, meaning it is a great place for electrophiles to attack.
Alkenes
Alkenes are unsaturated since they have a double covalent carbon bond. Alkenes have the general formula CnH2n. Below is a table of the first Alkenes. Note there is no 'methene' since, in order to have a carbon double bond, you need at least 2 carbon atoms. Once you get to butene, there are two locations the double bond could be placed (between the first and second, and third and fourth are considered the same since one could be flipped to make the other). This gives rise to isomerism.
Name | Formula | Structure |
---|---|---|
Ethene | C2H4 | |
Propene | C3H6 | |
Butene | C4H8 |
Cracking
This is the process of breaking down large fractions with high boiling points that are difficult to sell into smaller, more useful molecules.
An example of a cracking reaction:
Hexadecane ==>> Petrol + Butene + Ethene C16H34 ==>> C8H18 + C4H8 + 2C2H4
This reaction is done either by:
- Passing the vapour over a catalyst at high pressure (catalytic cracking).
- By the use of heat alone (thermal cracking) depending on the fraction used.
Cracking produces smaller alkanes, but also alkenes!
. | Thermal Cracking | Catalytic Cracking |
Temperature | 400-900oC | 450oC |
Pressure | 7000 kPa | Slight |
How? | Increased vibrations in atoms from heat splits the alkane. The higher the temperature, the further towards the end of the chain it splits at. | Zeolite catalyst has pores in its crystal where the rection takes place. branched alkanes cannot fit into this. |
Product Uses | Smaller alkanes can be sold easily, and alkenes can be used to make plastics in a further process. | This process produced branched alkanes, which burn more easily and therefore make good fuels. |
Hydrogenation
This means adding hydrogen, and if you do this to alkenes then they will turn into alkanes. This is the process used to produce margarine. The conditions are: 150°C and a nickel catalyst. Here is the reaction.
Electrophilic Addition
Because of this double bond, HBr for example, can attack the alkene and the mechanism for this is outlined below.
Not only HBr, but also other molecules will do this same process. For this reason, the two parts of the molecules have been color coded, and to get the mechanism for HSO4 and Br2 you merely substitute it.
The test for alkenes is the bromine water test. The mechanism for this is the one with Br-Br. A solution of Br will be coloured orange, but when this reaction happens with an alkene, it will become colourless because it becomes a haloalkane. In the middle of this reaction, a carbocation (that is a cation of carbon) is formed; this is a C+. The position of this is important, depending on whether this is primary, secondary, or tertiary (see this page), determines the likelihood of different products being formed. A tertiary carbocation is the most stable, and therefore will form the major product, while secondary and primary carbocations will make the minor product.
Questions and Answers
Explain the process of catalytic cracking on alkenes?
I got it as my homework for Chemistry in Indonesia.. I would like your help Jamie. In the article, you only explained about the alkanes not alkenes on catalytic cracking. I have tried: Nothing, just don't know what to do Trying things just make me confused. I think it was caused by: The question seem to be wrong? I really don' t know
ScienceAid QnA. This section is not written yet. Want to join in? Click EDIT to write this answer.
Referencing this Article
If you need to reference this article in your work, you can copy-paste the following depending on your required format:
APA (American Psychological Association)
Alkenes. (2017). In ScienceAid. Retrieved Nov 28, 2023, from https://scienceaid.net/chemistry/organic/alkenes.html
MLA (Modern Language Association) "Alkenes." ScienceAid, scienceaid.net/chemistry/organic/alkenes.html Accessed 28 Nov 2023.
Chicago / Turabian ScienceAid.net. "Alkenes." Accessed Nov 28, 2023. https://scienceaid.net/chemistry/organic/alkenes.html.
If you have problems with any of the steps in this article, please ask a question for more help, or post in the comments section below.
Comments
Article Info
Categories : Organic
Recent edits by: Taylor (ScienceAid Editor), Jamie (ScienceAid Editor)