Further Enthalpy: Enthalpies, Born-Haber Cycle, Mean Bond Enthalpy

Edited by Jamie (ScienceAid Editor), Taylor (ScienceAid Editor)

The Enthalpies

Previously, the enthalpies of formation and combustion have been discussed, however, there are numerous others. In the table below, some of these have been outlined, with a definition given.

Enthalpy Definition
Atomisation Hθa The standard enthalpy change when 1mol of gaseous atoms are formed. Depending on the standard state of the element, this could also be called the enthalpy of sublimation if going from solid to gas.
Bond dissociation, Hθdiss The standard enthalpy change when 1mol of gaseous covalently bonded molecule is broken to form 2 radicals. So the enthalpy change for A (g) ==>> X. (g) + Y.
Electron Affinity, Hθea The standard molar enthalpy change when an electron is added to an atom in the gas phase. For example: Cl (g) + e- ==>> Cl- (g)
Lattice Enthalpy, HθL The standard enthalpy change accompanying dissociation: the separation of 1 mol of solid ionic lattice into gaseous ions; formation the creation of 1 mol of solid from gas ions. Note that formation enthalpies are always negative and dissociation enthalpies are always positive.
Hydration, Hθhyd The standard molar enthalpy change for the process: X+/- (g) ==>> X+/- (aq).
Solution, Hθsol The standard enthalpy change when 1mole of ionic solid dissolves in enough water that none of the dissolved ions interact with each other.

Born-Haber Cycle

Born-Haber cycles expand Hess's Law by breaking up the lattice formation enthalpy into numerous other steps. Given the data for various enthalpies, it shouldn't be too difficult to deduce various reactions. Below is an example.

Was this helpful? Yes | No| I need help

The enthalpy we are finding has been highlighted. It is the lattice enthalpy of formation of NaCl. It has the reaction:

Na+ (g) + Cl- (g) ® NaCl (s)

Once the cycle has been constructed, calculating the enthalpy is a simple case of following the alternative route for the reaction. Remember that if you go in the opposite direction of the arrow, the sign of the enthalpy is reversed (i.e.. +20 become -20 or vice versa). 364 - (½x242) - 494 - 109 - 411 711 kJ mol-1

Was this helpful? Yes | No| I need help

It is possible to calculate the enthalpy of any reaction using the same principle of making several steps of different enthalpies, for example, the enthalpy of solution. Be careful of state symbols and the number of moles involved though!

Was this helpful? Yes | No| I need help

Mean Bond Enthalpy

There is a certain amount of energy required for breaking bonds, and energy released in forming bonds. Therefore, it should be a simple case of using the amount of energy in each bond to calculate the enthalpy change of a reaction. However, this is not possible, because the bond enthalpy for the same bond will vary in different compounds and conditions. In the absence of sufficient enthalpies, an average of the energy in each bond can be used as an estimate. This is called the mean bond enthalpy. The example below shows how they can be used.

Was this helpful? Yes | No| I need help

Referencing this Article

If you need to reference this article in your work, you can copy-paste the following depending on your required format:

APA (American Psychological Association)
Further Enthalpy: Enthalpies, Born-Haber Cycle, Mean Bond Enthalpy. (2017). In ScienceAid. Retrieved Jun 3, 2023, from https://scienceaid.net/chemistry/physical/moreenthalpy.html

MLA (Modern Language Association) "Further Enthalpy: Enthalpies, Born-Haber Cycle, Mean Bond Enthalpy." ScienceAid, scienceaid.net/chemistry/physical/moreenthalpy.html Accessed 3 Jun 2023.

Chicago / Turabian ScienceAid.net. "Further Enthalpy: Enthalpies, Born-Haber Cycle, Mean Bond Enthalpy." Accessed Jun 3, 2023. https://scienceaid.net/chemistry/physical/moreenthalpy.html.

If you have problems with any of the steps in this article, please ask a question for more help, or post in the comments section below.


ScienceAid welcomes all comments. If you do not want to be anonymous, register or log in. It is free.

Article Info

Categories : Physical

Recent edits by: Jamie (ScienceAid Editor)

Share this Article:

Thanks to all authors for creating a page that has been read 2,931 times.


Thank Our Volunteer Authors.

Would you like to give back to the community by fixing a spelling mistake? Yes | No